
5. SOME CONSEQUENCES OF THE GAUSSIAN ISOPERIMETRIC INEQUALITY

Equivalent formulations: We present two equivalent ways of writing the Gaussian isoperimetric inequal-
ity. The first one, without explicit reference to half-spaces is

Φ−1(γm(Aε))≥Φ−1(γm(A))+ ε for all Borel sets A and any ε > 0.(2)

Exercise 10. Deduce (2) and Theorem 1 from each other.

Here is yet another formulation5.

Proposition 11. Let f : Rn → R be a Lip(κ) function. Then there exists a Lip(κ) function g : R → R such that
γn ◦ f−1 = γ1 ◦g−1. In other words, the distribution of the random variable f on the probability space (Rn,BRn ,γn) is
the same as the distribution of the random variable g on (R,BR,γ1).

Exercise 12. Deduce Proposition 11 and Theorem 1 from each other.

Proposition 11 shows the dimension-free nature of isoperimetric inequality. In other words, the isoperi-
metric inequality will hold for standard Gaussian measures in infinite dimensions, once we make sense of
such an object! This would not have been the case if Proposition 11 only asserted that g is Lip(κ logn), for
example.

Log-concave densities: What made the proof of isoperimetric inequality in one dimension click? Looking
back, we see that the key point was that ϕ(u + ε)/ϕ(u) is decreasing in u, for any fixed ε > 0. Any other
density f satisfying this will also satisfy the isoperimetric inequality (perhaps we need symmetry?). This
condition is equivalent to log f (u+ ε)− log f (u) being decreasing in u. Assuming smoothness for simplicity,
this happens if and only if (log f )′(u) is decreasing in u, which in turn is equivalent to (log f )′′(u) being
negative. In other words, equivalent to log f being a concave function.

Any density (in any dimension) for which log f is concave, is called log-concave. Examples in one dimen-
sion are symmetric exponential density 1

2 e−|x|, uniform density on an interval, and of course the Gaussian.
Examples in higher dimensions are uniform measures on compact convex sets and the densities exp{−|x|p}
for p ≥ 1. One can get many more from these few, since log-concave densities are closed under convolu-
tions and under linear transformations (eg., marginals). Log-concave densities are a very important class
of densities that share many properties of Gaussian measures, in particular, concentration properties.

Gaussian Brunn-Minkowski inequality: In Euclidean space, we deduced the isoperimetric inequality
from the Brunn-Minkowski inequality. Is there an analogue for the Gaussian measure? Ehrhard initiated
this study and proved the inequality below for convex sets, again using his symmetrization procedure. The
convexity assumption was relaxed by Latala and completely removed by Borell.

Result 13 (Ehrhard, Latala, Borell). If A,B ⊆ Rn (Borel sets), and α ∈ [0,1], then Φ−1(γn(αA +(1−α)B)) ≥
αΦ−1(γn(A))+(1−α)Φ−1(γn(B)).

We shall not use this and hence not give a proof6.

Concentration inequalities: The isoperimetric inequality implies concentration inequalities for various
functions of Gaussian random variables. This is its primary importance in probability. It is possible to
deduce some of these concentration bounds, albeit with poorer constants, but the isoperimetric inequality
yields the sharpest general bounds.

5Taken from Boris Tsirelson’s lecture notes available on his home page.
6Potential presentation topic! See Borell’s paper The Ehrhard inequality. Another potential topic is a very different proof of the

Gaussian isoperimteric inequality by Bobkov, see An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric
inequality in Gauss space.
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Theorem 14. Let f : Rn → R be a Lip(κ) function. Let M f be a median of f , defined by γn{ f ≥ M f } ≥ 1
2 and

γn{ f ≤M f }≥ 1
2 . Then, for every t > 0, we have

γn
{

f −M f ≥ t
}
≤Φ

( t
κ

)
≤ e−

t2
2κ2 ,(3)

γn
{
| f −M f |≥ t

}
≤ 2Φ

( t
κ

)
≤ 2e−

t2
2κ2 .(4)

Proof. If A = { f ≤M f } then At ⊆ { f ≤M f +κt}. But Φ−1(γn(A))≥ 0 and hence by (2) we get Φ−1(γn(At))≥ t.
Hence γn{ f ≥M f +κt}≤Φ(t) which shows the first claim. The second follows by adding the same estimate
for γn{ f ≤M f − t}. !

Remark 15. Since Φ(t) is strictly smaller than 1
2 for every t > 0, it follows that the median is unique! In-

cidentally, we have been writing statements in terms of measures, but one can equivalently state them in
terms of random variables. If X1, . . . ,Xn are i.i.d. N(0,1) random variables on some probability space, and
V = f (X1, . . . ,Xn) for a Lip(κ) function f , then

P{|V −Med[V ]|≥ t}≤ 2e−t2/2κ2
.

The random variable is concentrated around its median. Incidentally, inequalities of this type, with perhaps
not the optimal constants on the right, can be obtained by easier methods (see the end of this section). Often
that suffices in applications but we decided to go through the isoperimetric inequality for its natural appeal,
in addition to sharpness of constants.

Example 16. Some examples of Lipschitz functions of interest are maxi xi, ‖x‖p (or any norm, for that matter),
d(x,A) for a fixed closed set A. A smooth function is Lipschitz if and only if its gradient is bounded.

What about functions of correlated Gaussians? Here is a simple exercise.

Exercise 17. Suppose X ∼ Nn(µ,Σ) and let f : Rn → R is a Lip(κ) function. Let V = f (X). Then P{|V −
Med[V ]|≥ t}≤ 2e−t2/2λ1κ2 with λ1 being the maximal eigenvalue of Σ.

Concentration inequalities of the type given by Theorem 14 are desirable to have for many other proba-
bility measures too. Deduce the following from Theorem 14.

Exercise 18. Let Vn be the uniform probability measure on [0,1]n. If f : [0,1]n → R is Lip(κ), show that

γn
{

f −M f ≥ t
}
≤ e−ct2/κ2

,

γn
{
| f −M f |≥ t

}
≤ 2e−ct2/κ2

.

Here c is a numerical constant (find it!).

For general product measures, for example uniform measure on the discrete cube {0,1}n, getting a similar
concentration inequality is hard. This is the famous Talagrand’s inequality, proved by Talagrand and now a
cornerstone in probability.

Concentration about the mean: Usually mean is easier to compute than median and concentration in-
equalities are often expressed around the mean. Here is a simple way to get a (sub-optimal) concentration
inequality around the mean for the same setting as above. Let f : Rn →R be a Lip(κ) function and let M f be
its median under γn and let E f =

R
f (x)dγn(x) be its expectation.

Using the bound in Theorem 14 we get

E[( f −M f )+] =
Z ∞

0
γn{ f > M f + t}dt ≤

Z ∞

0
Φ(t/κ)dt =

κ√
2π

.
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The same bound holds for E[( f −M f )−] and we get E[| f −M f |] ≤
√

2
π κ < κ. In particular, |E f −M f | < κ.

Therefore, for t ≥ 2, we get

γn{ f −E f > tκ}≤ γn

{
f −M f >

t
2

κ
}
≤Φ(t/2),

by another application of Theorem 14. For t ≤ 2, we use the trivial bound γn{ f −E f > tκ} ≤ 1. Putting all
this together and using the same for deviations below E f we arrive at the following result.

Theorem 19. Let f : Rn →R be a Lip(κ) function. Let E f =
R

f dγn. Then, for every t > 0, we have (with C = 1/Φ(1))

γn
{

f −E f ≥ t
}
≤CΦ

( t
2κ

)
≤Ce−

t2
8κ2 ,(5)

γn
{
| f −E f |≥ t

}
≤CΦ

( t
2κ

)
≤Ce−

t2
8κ2 .(6)

Weaker forms of concentration by easier methods: As we remarked earlier, weaker forms of concentration
inequalities can be obtained by easier methods some of which we mention here7.

Let f : Rn → R be a Lip(1) function and let X ∼ γn. We look for a number A f such that f (X) is well-
concentrated about A f . The crudest bound is as follows. Let Y be an independent copy of X on the same
probability space, and use E[| f (X)− f (Y )|]≤ E[‖X−Y‖]'

√
n. Observing that mina E[| f (X)−a|]≤ E[| f (X)−

f (Y )|], we get a number A f such that E[| f (X)−A f |] !√
n. By Markov’s inequality this gives weak bounds

like P{| f (X)−A f |≥ t} !
√

n
t . This compares poorly with the bound in (14).

To improve this, we introduce a technique that will be used many times later. Interpolate between X and
Y by setting Z(θ) = (cosθ)X +(sinθ)Y for 0 ≤ θ ≤ π

2 so that Z(0) = X and Z(π/2) = Y . The key property of
this interpolation is that for any θ, the random vectors Zθ = (cosθ)X +(sinθ)Y and Żθ =−(sinθ)X +(cosθ)Y
are independent and have γn distribution.

Now assume that f is smooth, then the Lipschitz condition is equivalent to |∇ f (x)| ≤ κ for all x ∈ Rn. It
is easy to approximate Lipschitz functions uniformly by smooth Lipschitz functions and thus extend the
bounds obtained below to all Lipschitz functions, a step we shall not elaborate on. Then, write f (X)− f (Y )
as the integral of d

dθ f (Zθ) = 〈∇ f (Zθ), Żθ〉 to get

E[| f (X)− f (Y )|]≤
Z π/2

0
E[〈∇ f (Zθ), Żθ〉]dθ

=
√

2
π

Z π/2

0
E[‖∇ f (Zθ)‖]dθ

≤
√

π
2
.

From this we get some number A f such that P{| f (X)−A f |≥ t} ! 1
t . This does not decay fast in t, but is free

of n, already a remarkable improvement over the crude bound.
By bounding E[G(| f (X)− f (Y )|)] for some convex increasing function G we can get better bounds along

the same lines.

Exercise 20. For b > 0 and x ∈ Rn define Gb(x) = (|x|− b)+. Use the convexity of G to obtain the bound
E[|Gb(X)−Gb(Y )|≥ t]≤ E[G(π

2 X)].

What concentration of f (X) does this yield?

7For a spectacular presentation leading up from simpler inequalities up to the Borell-TIS inequality, see the lecture notes of Boris
Tsirelson http://www.tau.ac.il/˜tsirel/Courses/Gaussian/lect2.pdf. Here I have taken a couple of points from those notes.
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